“Zero to Birth: How the Human Brain Is Built” with Professor William Harris

Zero to Birth reviewed on Bridging the Gaps

A single fertilised egg generates an embryo. Different cell types in this embryo develop into various organs of a new human being, including a new human brain. Everything starts with a single fertilised egg, and in the embryo, some embryonic cells develop into neural stem cells that construct the brain. By the time a baby is born, its brain is already made up of billions of precisely designed neurons that are connected by trillions of synapses to form a small, compact but incredibly powerful supercomputer. In his recent book “Zero to Birth: How the Human Brain Is Built” pioneering experimental neurobiologist professor William Harris takes the reader on an incredible journey to the very edge of creation, from the moment an egg is fertilised to every stage of a human brain’s development in the womb — and even a bit beyond. In this episode of Bridging the Gaps, I speak with Professor William Harris the process of how the brain is built.

William Harris is professor emeritus of anatomy at the University of Cambridge. He is the coauthor of Development of the Nervous System and Genetic Neurobiology and the co-editor of Retinal Development. He is a fellow of the Royal Society.

We begin by examining the evolutionary history of the brain, which spans billions of years and in the Proterozoic eon, when multicellular animals first descended from single-celled organisms, and then we discuss how the development of a fetal brain over the course of nine months reflects the brain’s evolution through the ages. We discuss the emergence of first neural stem cells and how the formation of the neural plate and then its progress to the neural tube give the first glimpses of the development of the brain in an embryo. We discuss in detail how cells divide and create neural stem cells and then how these stem cells start producing neurons. A fascinating topic that we then cover is how individual neurons form connections with other neurons. Professor Harris explains how comparative animal studies have been crucial to understanding what makes a human brain human, and how advances in science are assisting us in understanding many qualities that don’t manifest until later in life. This has been a fascinating discussion on an intriguing topic.

Complement this discussion with The Spike: Journey of Electric Signals in Brain from Perception to Action with Professor Mark Humphries and then listen to The Self-Assembling Brain” and the Quest for Artificial General Intelligence with Professor Peter Robin Hiesinger

By |October 15th, 2022|Biology, Neuroscience, Podcasts, Research|

“Spark: The Life of Electricity and the Electricity of Life” with Professor Timothy Jorgensen

Spark Book Review at Bridging the Gaps

When we think about electricity, we most often think of the energy that powers various devices and appliances around us, or perhaps we visualise the lightning-streaked clouds of a stormy sky. But there is more to electricity and “life at its essence is nothing if not electrical”. In this episode of Bridging the Gaps, I speak with Professor Timothy Jorgensen and we discuss his recent book “Spark: The Life of Electricity and the Electricity of Life ”. The book explains the science of electricity through the lenses of biology, medicine and history. It illustrates how our understanding of electricity and the neurological system evolved in parallel, using fascinating stories of scientists and personalities ranging from Benjamin Franklin to Elon Musk. It provides a fascinating look at electricity, how it works, and how it animates our lives from within and without.

We start by discussing the earliest known experiences that humans had with electricity using amber. Amber was most likely the first material with which humans attempted to harness electricity, mostly for medical purposes. Romans used non-static electricity from specific types of fish. Moving on to Benjamin Franklin, we discuss how he attempted to harner the power of electricity and we discuss the earliest forms of devices to store electric charge. We then discuss experiments conducted by Luigi Galvani on dead frogs and by his nephew on dead humans using electricity. As interest in electricity grew, many so-called treatemnts for ailments such as headaches, for bad thoughts and even for sexual difficulties also emerged that were based on the use of electricity; we discuss few interesting examples of such treatments. We then move on to reviewing the cutting edge use of electricity in medical science and discussed medial implants, artificial limbs and deep stimulation technologies and proposed machine-brain interfaces. This has been a fascinating discussion.

Complement this discussion by listening to he Spike: Journey of Electric Signals in Brain from Perception to Action with Professor Mark Humphries and then listen to On Public Communication of Science and Technology with Professor Bruce Lewenstein

By |March 17th, 2022|Artificial Intelligence, Biology, Future, Podcasts, Research|

“The Self-Assembling Brain” and the Quest for Artificial General Intelligence with Professor Peter Robin Hiesinger

How does a network of individual neural cells become a brain? How does a neural network learn, hold information and exhibit intelligence? While neurobiologists study how nature achieves this feat, computer scientists interested in artificial intelligence attempt to achieve it through technology. Are there ideas that researchers in the field of artificial intelligence borrow from their counterparts in the field of neuroscience? Can a better understanding of the development and working of the biological brain lead to the development of improved AI? In his book “The Self-Assembling Brain: How Neural Networks Grow Smarter” professor Peter Robin Hiesinger explores stories of both fields exploring the historical and modern approaches. In this episode of Bridging the Gaps, I speak with professor Peter Robin Hiesinger about the relationship between what we know about the development and working of biological brains and the approaches used to design artificial intelligence systems.

We start our conversation by reviewing the fascinating research that led to the development of neural theory. Professor Hiesigner suggests in the book that to understand what makes a neural network intelligent we must find the answer to the question: is this connectivity or is this learning that makes a neural network intelligent; we look into this argument. We then discuss “the information problem” that how we get information in the brain that makes it intelligent. We also look at the nature vs nurture debate and discuss examples of butterflies that take multigenerational trip, and scout bees that inform the bees in the hive the location and distance of the food. We also discuss the development of the biological brain by GNOME over time. We then shift the focus of discussion to artificial intelligence and explore ideas that the researchers in the field artificial intelligence can borrow from the research in the field of neuroscience. We discuss processes and approaches in the field of computing science such as Cellular Automata, Algorithmic Information Theory and Game of Life and explore their similarities with how GENOME creates the brain over time. This has been an immensely informative discussion.

Complement this discussion by listening to The Spike: Journey of Electric Signals in Brain from Perception to Action with Professor Mark Humphries and then listen to On Task: How Our Brain Gets Things Done” with Professor David Badre.